4,828 research outputs found

    Galaxy Selection and Clustering and Lyman alpha Absorber Identification

    Full text link
    The effects of galaxy selection on our ability to constrain the nature of weak Ly\alpha absorbers at low redshift are explored. Current observations indicate the existence of a population of gas-rich, low surface brightness (LSB) galaxies, and these galaxies may have large cross sections for Ly\alpha absorption. Absorption arising in LSB galaxies may be attributed to HSB galaxies at larger impact parameters from quasar lines of sight, so that the observed absorption cross sections of galaxies may seem unreasonably large. Thus it is not possible to rule out scenarios where LSB galaxies make substantial contributions to Ly\alpha absorption using direct observations. Less direct tests, where observational selection effects are taken into account using simulations, should make it possible to determine the nature of Ly\alpha absorbers by observing a sample of ~100 galaxies around quasar lines of sight with well-defined selection criteria. Such tests, which involve comparing simulated and observed plots of the unidentified absorber fractions and absorbing galaxy fractions versus impact parameter, can distinguish between scenarios where absorbers arise in particular galaxies and those where absorbers arise in gas tracing the large scale galaxy distribution. Care must be taken to minimize selection effects even when using these tests. Results from such tests are likely to depend upon the limiting neutral hydrogen column density. While not enough data are currently available to make a strong conclusion about the nature of moderately weak absorbers, evidence is seen that such absorbers arise in gas that is around or between galaxies that are often not detected in surveys.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journa

    High Metallicity Mg II Absorbers in the z < 1 Lyman alpha Forest of PKS 0454+039: Giant LSB Galaxies?

    Full text link
    We report the discovery of two iron-group enhanced high-metallicity Mg II absorbers in a search through 28 Lyman Alpha forest clouds along the PKS 0454+039 sight line. Based upon our survey and the measured redshift number densities of W_r(MgII) <= 0.3 A absorbers and Lyman Alpha absorbers at z ~ 1, we suggest that roughly 5% of Lyman Alpha absorbers at z < 1 will exhibit "weak" Mg II absorption to a 5-sigma W_r(2796) detection limit of 0.02 A. The two discovered absorbers, at redshifts z = 0.6248 and z = 0.9315, have W_r(Lya) = 0.33 and 0.15 A, respectively. Based upon photoionization modeling, the H I column densities are inferred to be in the range 15.8 <= log N(HI) <= 16.8 cm^-2. For the z = 0.6428 absorber, if the abundance pattern is solar, then the cloud has [Fe/H] > -1; if its gas-phase abundance follows that of depleted clouds in our Galaxy, then [Fe/H] > 0 is inferred. For the z = 0.9315 absorber, the metallicity is [Fe/H] > 0, whether the abundance pattern is solar or suffers depletion. Imaging and spectroscopic studies of the PKS 0454+039 field reveal no candidate luminous objects at these redshifts. We discuss the possibility that these Mg II absorbers may arise in the class of "giant" low surface brightness galaxies, which have [Fe/H] >= -1, and even [Fe/H] >= 0, in their extended disks. We tentatively suggest that a substantial fraction of these "weak" Mg II absorbers may select low surface brightness galaxies out to z ~ 1.Comment: Accepted The Astrophysical Journal; 25 pages; 6 encapsulated figure

    Damped Lyman Alpha Systems at z<1.65: The Expanded SDSS HST Sample

    Full text link
    We present results of our HST Cycle 11 Survey for low-redshift (z<1.65) DLAs in the UV spectra of quasars selected from the SDSS Early Data Release. These quasars have strong intervening MgII-FeII systems which are known signatures of high column density neutral gas. In total, UV observations of Ly-alpha absorption in 197 MgII systems with z<1.65 and rest equivalent width (REW) W2796 \ge 0.3A have now been obtained. The main results are: (1) 36(+/- 6)% of systems with W2796 \ge 0.5 A and FeII W2600 \ge 0.5 A are DLAs. This increases to 42(+/- 7)% for systems with W2796/W2600 0.1 A. (2) The mean N(HI) of MgII systems with 0.3 A \le W2796 < 0.6 A is a factor of ~36 lower than that of systems with W2796 \ge 0.6 A. (3) The DLA incidence per unit redshift is consistent with no evolution for z <~ 2 (Omega_L=0.7, Omega_M = 0.3), but exhibits significant evolution for z >~ 2. (4) Omega_{DLA} is constant for 0.5<z<5.0 to within the uncertainties. This is larger than Omega_{gas}(z=0) by a factor of ~2. (5) The slope of the N(HI) distribution does not change significantly with redshift. However, the low redshift distribution is marginally flatter due to the higher fraction of high N(HI) systems in our sample. (6) Finally, using the precision of MgII survey statistics, we find that there may be evidence of a decreasing Omega_{DLA} from z=0.5 to z=0. We reiterate the conclusion of Hopkins, Rao, & Turnshek that very high columns of neutral gas might be missed by DLA surveys because of their very small cross sections, and therefore, that Omega_{DLA} might not include the bulk of the neutral gas mass in the Universe. (Abridged)Comment: Accepted for publication in ApJ. 22 pages, 22 figure

    The Population of Weak Mg II Absorbers I. A Survey of 26 QSO HIRES/Keck Spectra

    Full text link
    We present a search for "weak" MgII absorbers [those with W_r(2796) < 0.3 A in the HIRES/Keck spectra of 26 QSOs. We found 30, of which 23 are newly discovered. The spectra are 80% complete to W_r(2796) = 0.02 A and have a cumulative redshift path of ~17.2 for the redshift range 0.4 < z < 1.4. The number of absorbers per unit redshift, dN/dz, is seen to increase as the equivalent width threshold is decreased; we obtained dN/dz = 1.74+/-0.10 for our 0.02 <= W_r(2796) < 0.3 A sample. The equivalent width distribution follows a power law with slope -1.0; there is no turnover down to W_r(2796) = 0.02 A at = 0.9. Weak absorbers comprise at least 65% of the total MgII absorption population, which outnumbers Lyman limit systems (LLS) by a factor of 3.8+/-1.1; the majority of weak MgII absorbers must arise in sub-LLS environments. Tentatively, we predict that ~5% of the Lyman-alpha forest clouds with W_r(1215) > 0.1 A will have detectable MgII absorption to W_r,min(2796) = 0.02 A and that this is primarily a high-metallicity selection effect (Z/Z_sun] > -1). This implies that MgII absorbing structures figure prominently as tracers of sub-LLS environments where gas has been processed by stars. We compare the number density of W_r(2796) > 0.02 A absorbers with that of both high and low surface brightness galaxies and find a fiducial absorber size of 35h^-1 to 63h^-1 kpc, depending upon the assumed galaxy population and their absorption properties. The individual absorbing "clouds" have W_r(2796) <= 0.15 A and their narrow (often unresolved) line widths imply temperatures of ~25,000 K. We measured W_r(1548) from CIV in FOS/HST archival spectra and, based upon comparisons with FeII, found a range of ionization conditions (low, high, and multi-phase) in absorbers selected by weak MgII.Comment: Accepted Version: 43 pages, PostScript figures embedded; accepted to ApJ; updated version includes analysis of CIV absorptio

    Constraints on the Lyman continuum radiation from galaxies: first results with FUSE on Mrk 54

    Get PDF
    We present Far Ultraviolet Spectroscopic Explorer observations of the star-forming galaxy Mrk 54 at z = 0.0448. The Lyman continuum radiation is not detected above the HI absorption edge in our Galaxy. An upper limit is evaluated by comparison with the background measured in regions of the detector adjacent to the observed spectrum. A spectral window of 16 A, reasonably free of additional HI Lyman series line absorption is used. No correction is needed for molecular hydrogen absorption in our Galaxy but a foreground extinction of 0.29 mag is accounted for. An upper limit of 6.15 10^{-16} erg/cm^2/s/A is obtained for the flux at ~ 900 A in the rest frame of Mrk 54. By comparison with the number of ionizing photons derived from the H-alpha flux, this limit translates into an upper limit of f_esc < 0.062 for the fraction of Lyman continuum photons that escape the galaxy without being absorbed by interstellar material. This limit compares with the limits obtained in three other nearby galaxies and is compatible with the escape fractions predicted by models. The upper limits obtained in nearby galaxies contrasts with the detection of Lyman continuum flux in the composite spectrum of Lyman-break galaxies at z ~ 3.4. The difficulties and implications of a comparison are discussed.Comment: 9 pages, 3 figures, accepted for publication in A&A include aa.cls v5.0

    Where are the absorbers towards Q2302+029?

    Get PDF
    We present images and spectroscopy of objects close to the sightline of Q2302+029 in order to search for galaxies responsible for the remarkable z=0.7 high-ionization absorption line system found by Jannuzi et al (1996). This system shows `normal' narrow OVI, NV, and CIV lines superimposed on broader (3,000-5,000 km/s wide), unsaturated absorption troughs some 56,000 km/s away from the QSO emission redshift (z=1.052). Despite reaching sensitivities sufficient to detect 1/10 L* galaxies in the optical and 1/20 L* in the infra-red, we are unable to detect any obvious bright galaxies which might be responsible for the absorption beyond ~ 6 h-1 kpc of the sightline. This supports the hypotheses that the absorption is either intrinsic to the QSO, or arises in intracluster gas. Adopting either explanation is problematic: in the first case, `associated' absorption at such high ejection velocities is hard to understand, and challenges the conventional discrimination between intrinsic and intervening absorbers; in the second case, the gas must reside in a ~ 40 h-1 Mpc long filament aligned along the line of sight in order to reproduce the broad absorption. Spectroscopy of objects beyond the immediate vicinity of the QSO sightline reveals a galaxy cluster at z=0.59, which coincides with strong Lya and more narrow high ionization lines in the quasar spectrum. Here too, the lack of galaxies at distances comparable to those found for, e.g., Lya-absorbing galaxies, suggests that the absorption may arise from intracluster gas unassociated with any individual galaxies.Comment: 16 pages, accepted by Ap
    corecore